Déterminant circulant et suite de polygones

Geoffrey Deperle

Leçons associées:

- 102 : Groupe des nombres complexes de module 1. Racines de l'unité. Applications.
- 149 : Valeurs propres, vecteurs propres. Calculs exacts ou approchés d'éléments propres. Applications.
- 152 : Déterminant. Exemples et applications.
- 153 : Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.
- 155: Endomorphismes diagonalisables en dimension finie.
- 181 : Barycentre dans un espace affine réel de dimension finie, convexité. Applications.

Le but de ce développement est de montrer le théorème suivant :

Théorème. Soit
$$a_0, \dots, a_{n-1} \in \mathbb{C}^n$$
 et $\omega = e^{i\frac{2i\pi}{n}}$, alors
$$\begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \ddots & a_{n-2} \\ \vdots & & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \end{vmatrix} = \prod_{j=0}^{n-1} \sum_{k=0}^{n-1} a_k w^{jk}$$

Preuve : Soit $\mathcal{B} = (e_1, \dots, e_n)$ la base canonique de \mathbb{C}^n , J la matrice de l'unique endomorphisme qui à e_i associe à e_{i-1} si $i \geq 2$ et qui associe e_1 à e_n . On a

donc en notant A la matrice dont on cherche le déterminant, on a $A = \sum_{k=0}^{n-1} a_k J^k$.

Diagonalisons A en diagonalisant J.

Comme A = P(J) avec $P = \sum_{i=0}^{n-1} a_k X^k$, si $Q \in \mathbb{C}[X]$ tel que $Q \neq 0$ et $\deg Q < n$, $Q(J) \neq 0$ (par lecture des coefficients sur la matrice).

Donc le polynôme minimal de J vérifie deg $\pi_J \geq n$. Or, $J^n - I_n = 0$ donc $\pi_J = X^n - 1$.

Or, π_J divise le polynôme caractéristique χ_J de J donc $\chi_J = X^n - 1 = \prod_{k=0}^{n-1} (X - \omega^k)$.

Donc J est diagonalisable et il existe $Q \in GL_n(\mathbb{C})$ telle que

$$Q^{-1}JQ = \begin{pmatrix} 1 & & & (0) \\ & \omega & & \\ & & \ddots & \\ (0) & & & \omega^{n-1} \end{pmatrix}$$

D'où
$$Q^{-1}JQ = P(Q^{-1}JQ) = \begin{pmatrix} P(1) & & & (0) \\ & P(\omega) & & \\ & & \ddots & \\ (0) & & & P(\omega^{n-1}) \end{pmatrix}.$$

D'où

$$\det(A) = \prod_{i=0}^{n-1} P(\omega^i) = \prod_{i=0}^{n-1} \left(\sum_{k=0}^{n-1} a_k \omega^{jk} \right)$$

Application. Soit P un polygone du plan complexe dont les sommets sont $\{z_1, \ldots, z_n\}$. On définit par récurrence la suite de polygone $(P_k)_{k\in\mathbb{N}}$ avec $P_0=P$ et pour tout $k\in\mathbb{N}$, les sommets de P_{k+1} sont les milieux des arêtes de P_k .

La suite (P_k) converge vers l'isobarycentre de $\{z_1, \ldots, z_n\}$.

Preuve:

Étape 1 : Montrons la convergence de la suite (P_k)

On représente le polygone P_k par le vecteur $Z_k = \begin{pmatrix} z_1^k \\ \vdots \\ z_n^k \end{pmatrix}$, la relation de récurrence s'écrit alors

$$Z_{k+1} = \begin{pmatrix} \frac{z_1^k + z_2^k}{2} \\ \vdots \\ \frac{z_n^k + z_1^k}{2} \end{pmatrix} = AZ_n \text{ avec } A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & & \frac{1}{2} \\ \frac{1}{2} & 0 & \dots & 0 & \frac{1}{2} \end{pmatrix} \text{ et } Z_0 = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}.$$

Ainsi, on a $\forall k \in \mathbb{N}, Z_k = A^k Z_0$. Il suffit de montrer que la suite (A^k) converge pour n'importe quelle norme. On a

$$\chi_A(X) = \begin{vmatrix} X - \frac{1}{2} & -\frac{1}{2} & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \dots & 0 & X - \frac{1}{2} \end{vmatrix}$$

Par calcul du déterminant circulant, on a

$$\chi_A(X) = \prod_{j=0}^{n-1} \left(X - \frac{1 + \omega^j}{2} \right)$$

Puisque les $\frac{1+\omega^j}{2}$ sont distincts deux à deux, χ_A est scindé à racines simples donc A est diagonalisable. Il existe $Q \in \operatorname{GL}_n(\mathbb{C})$ tel que $A = QDQ^{-1}$ avec $D = \operatorname{diag}(\lambda_0, \dots, \lambda_{n-1})$ avec pour tout $j \in [0, n-1]$ $1], \lambda_j = \frac{1 + \omega^j}{2}.$

Or,
$$\forall j \in [1, n-1], \left| \frac{1+\omega^j}{2} \right| = \left| e^{\frac{ij\pi}{2}} \frac{e^{\frac{ij\pi}{2}} + e^{\frac{-ij\pi}{2}}}{2} \right| = |\cos\left(\frac{j\pi}{n}\right)| < 1.$$

Ainsi, pour tout $j \in [0, n-1], \lambda_j^k \xrightarrow[k \to +\infty]{0}$.

Par conséquent, la suite (A^k) converge vers $B := Q \operatorname{diag}(1, 0, \dots, 0) Q^{-1}$. Posons $Z_{\infty} = BZ_0$, on a $Z_k \xrightarrow[k \to +\infty]{} Z_{\infty}$ (on a $Z_{\infty} = AZ_{\infty}$). Or, l'espace propre associé à 1 contient

le vecteur $\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ et est de dimension 1 (car χ_A possède n racines distinctes).

Donc il existe $a \in \mathbb{C}$ tel que $Z_{\infty} = a \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ c'est-à-dire (P_k) converge vers a.

Étape 2 : Montrons que la limite est l'isobarycentre de P

Montrons que les P_k ont même isobarycentre. Soit g_k l'isobarycentre de P_k , on a pour $k \in \mathbb{N}$,

$$g_{k+1} = \frac{1}{n} \sum_{i=1}^{n} z_i^{k+1} = \frac{1}{n} \left(\sum_{i=1}^{n-1} \frac{z_i^k + z_i^{k+1}}{2} + \frac{z_n^k + z_1^{k+1}}{2} \right) = \frac{1}{n} \sum_{i=1}^{n} z_i^k = g_k$$

Ainsi, par continuité de la fonction qui à n points du plan associe son isobarycentre, (g_k) converge vers l'isobarycentre du polygone $\{a, \ldots, a\}$ qui est a.

Références

Philippe Caldero et Marie Peronnier. Carnet de voyage en Algébrie. Calvage Mounet, 2019.